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Abstract. From a previously obtained set of generalised spheroidal wave equations for a 
hydrogenic system in half-space, a method is developed for the determination of the depth 
of the surface effect on the eigenstates of donor impurity in semiconductors. As a concrete 
example of an application, the depths of the surface effect for the first 22 impurity states in 
GaAs are calculated using this method. 

1. Introduction 

Within the framework of effective-mass theory, a shallow donor impurity in a semi- 
conductor with a surface can be treated as a hydrogenic system in half-space. The 
dominant potential function is chosen to be Coulombic in the interior, with an infinite 
barrier at the surface. The Schrodinger equation of such a system is shown to be separable 
in prolate spheroidal coordinates and a set of generalised spheroidal wave equations 
results from the separation (Shan et a1 1985). The general properties of this set of 
equations have been investigated in great detail (Shan (1987); hereafter referred to as 
I), and exact solutions for a large number of eigenstates have been obtained in a 
sufficiently large range of system-centre-surface distance (Shan et a1 (1987); hereafter 
referred to as 11). Much quantum mechanical study of this set of equations remains to 
be done; progress is currently steady. In the meantime, the results in I and I1 are ready 
for application to surface problems in semiconductor physics. 

Consider an impurity positioned at a distance d from the surface of a semiconductor. 
It is quite obvious that the surface effect on the impurity is largest when d = 0 and 
decreases as d increases. The results calculated in I1 show that there is a distance, 
sufficiently large but finite, at which the surface effect essentially dwindles away to 
nothing. This distance, denoted d,, is called the ‘depth of the surface effect’. d, provides 
a quantitative measure of how far the influence of the surface on the impurity may 
extend. The purpose of the present paper is to develop a method of calculating the depth 
of the surface effect on donor impurity in semiconductors. As in I and 11, the relevant 
formulae in this method are obtained using some of the existing mathematical methods 
and techniques of molecular physics with appropriate modifications. 
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2226 H C Tseng and Y Shan 

2. The magnitude of the surface effect 

The basic equations resulting from separation of variables in the Schrodinger equation 
for an impurity in a semiconductor with a surface are (Shan et a1 1985) 

(d/dE)[(g2 - 1) (d/dE)M(g)] + [ A  - m2/(E2 - 1) + $R2Eg2 + RE]M(E) = 0 (1) 

(d/dr)[Q - r2>(d/dr>“  + [ - A  - m2/(1 - r2> 
- $ R * E ~ ~  + R / v / ] A J ( ~ )  = o (2) 

(-$ + m”)@(q)  = 0. (3) 

Equations (1) and (2) are called ‘generalised spheroidal wave equations’. The (unnor- 
malised) solution of ( 3 )  is @ ( q )  = exp( + imq)  where m is zero or a positive integer. In 
equations (1) and (2), R = 2dis twice the distance between the impurity and the boundary 
surface and is measured in units of effective first Bohr radius a,  = fi2&/m*e2, where E is 
the dielectric constant of the semiconductor and m* is the effective mass of the electron. 
The energy eigenvalue E is measured from the conduction band edge in units of the 
effective Rydberg R* = e4m*/h2fi2. A is a separation constant. Equations ( 1 )  and (2) 
have been solved exactly in 11. A careful analysis shows that, as a function of R ,  the 
energy eigenvalue E(R) displays faithfully and in detail the surface effect on the impurity 
system. It is advantageous to define the magnitude of the surface effect as 

Y,(R)  = ( E ( R )  - E(=))/(E(O) - E(=))  (4) 

to account quantitatively for the surface effect, where E(0)  = -1/n2 and E ( a )  = 
-l/hlZ. n is the spherical principal quantum number in the quasi-united-atom (QUA) 
limit and N the parabolic principal quantum number in the quasi-separated-atom (QSA) 
limit as shown in I. Y,(R) has the properties that Y,(O) = 1 and Y,(a) = 0, and Y,(R) 
decreases monotonically from 1 to 0 as R increases from 0 to =, as can be easily seen 
from the variation of E(R)  with R obtained in 11. These properties are common to the 
Y,(R) of all eigenstates of the impurity system. Y,(R) tells us numerically how large the 
surface effect on an impurity at R is. Thus ‘magnitude of the surface effect’ is an 
appropriate description for Y,(R). 

3. The depth of the surface effect 

The depth of the surface effect, d,, can be defined by means of (4). Strictly speaking, d,  
must be infinity in order to make Y,(R = 2d,) equal to zero. However, a definition for d,  
with such a severe restriction, although rigorous in a mathematical sense, is hardly useful 
in physical applications. In the problems concerned with impurity in semiconductors, 
some experimental constants often have to be used as input data, e.g. E and m*. The 
experimental values of these constants usually have three to four significant figures. 
Therefore, the number of reliable figures in the calculated numerical results is at best 
three or four. A distance d for which Ys(2d)  has a vanishingly small value of the order 
of (or ought to be large enough to be designated physically, although not 
mathematically, the depth of the surface effect, d,. That is, 

YS(2d,)  = (or W). ( 5 )  
Y,  given by ( 5 )  is practically equal to zero, its first four or five figures only being taken 
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into account to match the number of significant figures of the other quantities. The 
boundary surface exerts no substantial influence over an impurity at a distance d, from 
it. 

4. Asymptotic expansion of the energy eigenvalue 

Calculating the depth of the surface effect, d,, from (4) and ( 5 )  involves calculating the 
energy eigenvalue E(R). One way of calculating E(R) is to solve equations (1) and (2) 
simultaneously, as has been done in 11. The calculation must start from R = 0 and 
advance step by step with small increments AR until R = 2d, is reached. This will require 
a lot of effort. If we are only calculating d,, such a calculation procedure is not ecqnomical 
in computation time, because not all the calculations in the interval of smaller Rs are 
necessary. Only the energy eigenvalues at larger Rs around 2d, are needed for calculating 
the depth of the surface effect. The energy eigenvalues in this region of R can be obtained 
from an asymptotic expansion of E(R). The most efficient and economical way of 
determining the depth of the surface effect is the incorporation of the asymptotic 
expansion into the combination of equations (4) and ( 5 ) .  The asymptotic expansion of 
E(R) can be obtained by following a procedure similar to that of Power (1974). Letp’ = 
-bR2E and A ’ = A - p 2 ,  as defined in I. The eigenvalues E(R) at large but finite R are 
given by 

E(R) = -I/(N+ 6 ~ ) 2  = -I/N* + 2 6 ~ / ~ 3  + 0 ( 6 ~ 2 )  + . . . (6) 
S T =  (4p>*X2-*” e-*P[T!(T+ m)!]-’{l + (1/4p)(-6x2 - 2w + 2D2) 

+ (1/32p2)[36x4 + (64 In 2 - 5 6 ) ~ ~  - 4x + 24x2w 

+ 4w2 - 8x0 + D[(8 - 64 In 2)x2 + 8w - 121 

+ D2(-24x2 - 8w + 4 4 ~ )  - 12D3 + 4D4] + O(l/p3)} (7)  
where 

D = R/2p 

x = T +  a(m + 1) + 6 T  

cc) = a(l - m*) N = m  + 1 + S +  T, 

N ,  S and T are the parabolic quantum numbers in the QSA limit as defined in I .  The 
derivation of (6) and (7) is given in the Appendix. It is easily seen that 6T+ 0 as R + x. 

(the QSA limit). The practical way of using these formulae to calculate the energy 
eigenvalue is as follows. For a given value of R and a given eigenstate labelled by the set 
of spherical quantum numbers nlmin the QuAlimit, we first obtain the parabolic quantum 
numbers N ,  S ,  T and m in the QSA limit from equations (30) and (22) of I. Then 6 T  is 
calculated from (7) ,  in whichp, D and x are approximated by their values in the QSA 
limit,i.e,p+ R/2N,D+ N a n d x +  T + a(m + l).Termsoftheorderofl/p30rhigher 
are dropped. Putting this GTin (6) and omitting the terms of the order of 6T2 and higher, 
we then have the energy eigenvalue of state nlm at R. The energy eigenvalues calculated 
using this asymptotic expansion for several sample states are listed in table 1. The exact 
energy eigenvalues obtained in I1 are also included in this table for comparison. The 
ranges of R in this table are selected, by visual inspection of the energy curves in 11, to 
be roughly in the vicinity of 2d,. It may be seen that the eigenvalues obtained from (6) 
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Table 1. Energy eigenvalues in the asymptotic region. E is in 0.1 R and R* in a,. 

E 

State R Asymptotic expansion Exact 

2PO 7.0 
8.0 
9.0 

10.0 
4dn 17.0 

18.0 
19.0 
20.0 
25.0 

5fa 32.0 
34.0 
36.0 
38.0 
40.0 

Sgp 38.0 
40.0 
42.0 
44.0 

6f6 30.0 
32.0 
34.0 
36.0 
38.0 

-9.938373906 
- 9.973 872 974 
-9.989 125 285 
-9.995 536 876 
-0.109941 6373 
-0.110 205 5673 
-0.1104120108 
-0.1105728690 
-0.110970S015 
-0.1108109218 
-0.110 927 2629 
-0.110999 6380 
-0.111 044 1220 
-0.111071 1752 
-0.621 7039259 
-0.622 596 4257 
-0.623261 7871 
-0.6237524684 
-0.397375 6361 
-0.398 040 0820 
-0.398543 1489 
- 0.398 921 65 18 
-0.399 204 8649 

- 9.937 709483 
-9.973 838 869 
-9.989 150049 
-9.995 551 569 
-0.1100193938 
-0.110 265 7223 
-0.110457 7922 
-0.1106072598 
-0.110977 7610 
-0.110821 1134 
-0.110933 1825 
- 0.11 1002 9569 
-0.111 045 9375 
- 0.11 1072 1513 
-0.621661 8585 
-0.622 578 7962 
- 0.623 255 2506 
-0.6237505569 
-0.397503 2763 
-0.398 141 7494 
-0.398 620 9997 
-0.3989796711 
-0.399247 2689 

and (7) are in practice close enough to the exact results. 

5.  Numerical results and discussion 

The semiconductor GaAs is used as an example for the numerical calculations. Useful 
parameters are m* = 0.0665 me and E = 12.5 (Summers et aZ1970). The effective Bohr 
radius a, = 99.469 A and the effective Rydberg R* = 5.790 meV. The depth of the 
surface effect, d,, is computed by the Newton-Raphson method (Dodes 1978). The 
numerical results obtained from Y,  = for the first 22 states are 
tabulated in tables 2 and 3 ,  respectively. The energy eigenvalue in each state at R = 2d, 
is also computed and given in the last column of the table and it may easily be seen that 
this eigenvalue is actually equal to the energy eigenvalue in the QSA limit. This suffices 
to demonstrate the fact that the depth of the surface effect, d,, in the second column of 
these tables is computed correctly. The negative of the derivative of E with respect to d ,  
which is -2d E/d R ,  is the force due to the presence of the boundary surface of the 
semiconductor. On physical grounds this force is for each state expected to vanish at 
R = 2d,. The numerical results in the third columns of these tables show that this is 
indeed the case. 

However, 
where less precision in the determination of d ,  with Y,  = is required, the expansion 
formulae (6) and (7) are still within the scope of applicability. 

The present method can also be applied to the Wannier exciton. m* is replaced by 

and Y,  = 

We present here only the results calculated from Y,  = and 
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Table 2. The depth of the surface effect on impurity in GaAs calculated from Y, = 
The energy is in meV and the length in A. 

2PU 
3PO 

4PU 
3dn 

4dn 
4fo 
4f6 
5PU 
5dn 
5fo 
5f6 
5gn 
5gP, 
6PO 
6dn 
6fa 
6f6 
6gn 
6gv 
6ho 
6h6 
6hY 

595.245 
1023.782 
1362.653 
1351.210 
1836.192 
1702.725 
2265.967 
1604.419 
2217.532 
2312.31 1 
2767.272 
2786.437 
3283.822 
1793.115 
2516.137 
2815.703 
3175.421 
3426.539 
3801.020 
3260.256 
3993.215 
4400.869 

0.6858358546 X 

0.6405782659 X 
0.6454468695 X 
0.1539710667 X 
0.1538426362 X 

0.8693246637 X 10-5 
0.1528629673 X 
0.5581834305 X 

0.5508367166 X 

0.2229813416 X 

0.5445254258 X 

0.2210662338 X 

0.5379400526 X 
0.2537520651 X 

0.2473233722 X 
0.8374599525 X 
0.2433578413 X 
0.8263204538 X 

0.2400388827 X 
0.2569809792 X 10-5 
0.8150650921 X 
0.2366541165 X 

5.78956 
1.447 41 
1.44741 
0.64330 
0.643 30 
1.44741 
0.64330 
0.361 86 
0.361 86 
0.643 30 
0.36126 
0.64330 
0.36186 
0.23159 
0.23159 
0.361 86 
0.23159 
0.36186 
0.221 59 
0.64330 
0.36186 
0.231 59 

Table 3. The depth of the surface effect on impurity in GaAs calculated from Y,  = 
The energy is in meV and the length in A. 

2PO 
3PO 

4PO 
3dn 

4dn 
4fo 
4f6 
5PO 
5dn 
5fo 
5f6 
5 w  
5gP, 
6PU 
6dn 
6fa 
6f6 
6gn 
6gP; 
6ho 
6h6 
6hY 

719.371 
1270.253 
1626.288 
1712.121 
2227.280 
1980.129 
2681.578 
2068.715 
2728.459 
2727.942 
33 14.408 
3221.645 
3862.61 1 
235 1.6 16 
3 140.566 
3363.308 
3848.893 
4003.402 
4515.845 
3720.575 
4596.941 
5153.733 

0.6973015562 X 10-5 
0.6495074435 x 
0.6534028902 X 

0.1545426159 X 

0.1546995816 X 
0.8809808119 X 
0.1541753260 X 

0.5526147047 X 

0.5490653011 X 

0.2250521312 x 
0.5451319719 X 

0.2237715646 X 

0.5407932967 X 
0.2481730358 X 
0.2444841230 x 
0.8391236149 X 

0.2419776570 X 

0.8316341966 x 
0.2396739883 X 

0.2606780266 X 

0.8238885078 X 

0.2372270943 X 

5.78995 
1.44749 
1.44749 
0.64333 
0.64333 
1.44749 
0.64333 
0.36187 
0.361 87 
0.64333 
0.361 87 
0.64333 
0.36187 
0.231 60 
0.231 60 
0.361 87 
0.23160 
0.36187 
0.23160 
0.64333 
0.36187 
0.23160 
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the reduced mass calculated from the effective masses of the electron and the hole, and 
d (as well as d,) is the distance between the centre of mass of the electron-hole system 
and the boundary surface (Shan et aZ1985). 

In conclusion, it is worth mentioning that our objective in the present paper is the 
development of a simple, easily applicable method to be used solely for the determination 
of the depth of the surface effect. In order to obtain the relevant formulae in manageable 
forms, mathematical rigour has to some extent been sacrificed. A rigorously derived 
expansion formula for E(R)  would consist of a large number of terms and would be valid 
in the interval covering large R as well as the Rs whose values are somewhat smaller than 
2ds. However, such an expansion formula for E(R)  would not be more suitable for the 
determination of the depth of the surface effect because (6) and (7)  are already good 
enough for this purpose. 
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Appendix. Derivation of (6) and (7) 

Following Power (1974), let the solution M ( 5 )  of (1) be 

M1[2p(E - l ) ]  satisfies the following differential equation: 
WE) = ( E 2  - w2 exP[-p(E - l)lM1[2p(5 - 111. 

( L ( u , p ,  m, C) - A&)M(u) = 0 

C = R/2p  
where 

and 
L(u,p,  m, C) = u(u + 4p) d2/du2 + [ - u 2  + 2u(m + 1 - 2p) + 4p(m + l)]  

u = 2p(E - 1) 

x d/du  + m(m + 1) - 2p(m + 1 - C)(1 + ~ / 2 p ) .  (A31 

When R is large but finite, p is also a large parameter. Dividing (A2) through by 4p 
and retaining the leading terms, we have 

[ud2/du2 + (m + 1 - U )  d/du  + B(C - m - 1 - A&/2p)]Ml(u) = 0. (-44) 

(A51 

(A61 

The solution for M I  is given by 

M , ( u )  = M(i(m + 1 - C + A&/2p), m + 1, U )  

[ ( S  + m ) ! / S ! m ! ] M ( - S ,  m + 1, U )  = LT+m(u) 

h(C - m - 1 - A&/2p) = S + 6s 

i/r(-s - 6s) = ( - 1 ) ~ + l s ! 6 ~ .  

where M is the confluent hypergeometric function, and 

where LT+,(u) is the associated Laguerre polynomial. As R+ 00, M l ( u )  becomes 
LIFtm(u), as obtained in I. Hence 

with 6S-t 0 as R+ 00. For small 6 S ,  we have 
(A71 

(A8) 
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When U is very large, the confluent hypergeometric function becomes 
s!m! 

(S + m)! M ( - S - d S , m + l , u ) =  LT+:,(u) 

(-l)S+’m! e”6S ( S  + j ) ! ( S  + m + I)! 
(A91 j !  uI 

+ 
( S + m ) !  uS+m+l j 

We must let 6S = 0 even for finite R, otherwise the second term in (A9) diverges as 
exp(p6) as E +  W .  Thus, for our initial approximation, we take 

A; = -2p(2S + m + 1) + 2pC. (A10) 
As for equation (2), we let the solution N ( q )  be as follows. 
For - l ~ q < O  

N ( r )  = (1 - q 2 F 2  exP[-P(l + v)lNi-)Pp(l  + 711. 

(L (v ,  -p, m, D) - A;)N(-)(u) = 0 

( A l l )  

( A W  

Ni-1 satisfies the following equation: 

where v = 2p(l + q )  for 0 S v s 2p and D = R/2p. 
For 0 s q s 1 

N ( r )  = (1 - r2)m’2 exP[-P(l - r> lNI“PP( l  - r>l. 

(L(w, -p, m, D) - A;)N(+)(w) = 0 

(A131 

(A141 

We then have 

where w = 2p(l - q )  for 0 s w G 2p. 
Through a procedure completely analogous to that described above, we obtain 

N\-)(v) = M(+(m + 1 - D - A;/2p), m + 1, U )  

N?)(w)  = M(h(m + 1 + D - A;/2p), m f 1, w) 

Al, = 2p[2(T + 6T)  + m + 11 - 2pD 

(A151 

(A161 

(A171 
with 6T+  0 as R + 0. Using (A9) for N ( - ) ( u )  and N ( + ) ( w ) ,  we must have a non-zero 
S T  so that N i - ) ( v )  and N ( + ) ( w )  can satisfy their boundary condition N$-)(2p) = 
N(+)(2p) = 0. If we take 6T = exp(-2p), the two terms in (A9) will be of comparable 
magnitude and cancel each other to give zero. 

In the following derivation of 6T  we shall use the modified comparison method 
(Slavyanov 1967, Komarov and Slavyanov 1968, Power 1974). In the region - 1 s q G 0 
we use a solution for N( q )  

N ( v )  = Mx,m/2 (2~t(q))/[t’(q)(l  - q2)11’2 (A181 

where Mx,m/2 is the Whittaker function (Abramowitz and Stegun 1964). Then 

2 A’/2p + (R/2p)q ~ ( t ’ ) ~  i 1 - q 2  t 
( t ’ ) 2  - 1 + - 

P 

Here the subscript q of A’ has been dropped for simplicity. q = - 1 still gives a regular 
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singular point in the transformed equation and it gives the condition 

t( - 1) = 0. (AZO) 
The expansion of A’/2p is obtained from the ‘quantum condition’ (Komarov and 
Slavyanov 1968) 

A’ 

2P 
A lengthy calculation gives 

l - r  ( x - D ) ~ + w  

2 2(1 - 11) 
ln- - 

and 

A’ = 2p(2x - 0)  - 2(x2 + U - x D )  - (1/2p)[2x(x2 + U )  

- (3x2 -t w)D + x D 2 ]  + O(l/p2) 

where o = t(l - m2) and x = T + 4(m + 1) + 6T.  In the region 0 6 
make the replacements 

s 1, we simply 

x+x’ r+ -r D + - D  (A241 

x = x’ (A251 

t (q;  P, x1D)  = t ( v ;  -p> - x , -D> (A261 

A ’ b ,  x, d, = A‘( -p ,  -x, -D,  0). (A271 

(A281 

0429) 

in the formulae derived for -1 S q S 0. A’ is unchanged after the replacements. Thus 

i.e. T = T’. We also have the following relations: 

Let a new function G ( r ;  p ,  x, D )  be defined (Power 1974) by 

( q ;  P, x, 0)  + G ( r ;  - p ,  -x,  -011 N ( q )  = (1  - q2)-1/2[(- l ) (m+1)/2G 

in the region -1 q s 0. The boundary condition N ( q  = 0) = 0 demands 

(-1)(mf1)/2G(O;p, X, D )  + G(0; -p, -x, -D)  = 0 
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where 

G(O;p,x, 0)  = m!(-2p)X 2-D e-P[T(B(m + 1) + 31)I-l 

X [[l + (1/4p)(-3x2 + 431 - 0 - 2 0  + D 2 )  + (1/32p2)h4(10 - 4 In 2) 

+ ~ ~ ( 3 2  In 2 - 52) + 64x2 - 231 + (4 + 4 In 2)x20 

+ 2w2 - 1 2 ~ ~ 0  + 0[(4 In 2)x3 + (16 - 32 In 2)x2 

- (24 + 4 0  In 2)31 + 8 0  - 61 + D2[(4 In 2 - 8)x2 

+ 3031 + 201 + D3(-10 - 431 In 2) + D4} + O(l/p3)]. 

Substituting (A8) and (A30) in (A29) we obtain 

S T =  (4p)2x2-2D e-2P[T!(T+ m)!]-'[l + (1/4p)(-6x2 - 2 0  + 2D2) 

+ (1/32p2){36x4 + (64 In 2 - 5 6 ) ~ ~  - 431 + 24x2 0 + 402 

- 8310 + 0 [ ( 8  - 64 In 2)x2 + 8w - 121 + D2(-24x2 - 8 0  + 4431) 
- 1203 + 404} + 0(1/p3)n. (A31) 

The asymptotic expansion of A' is obtained from (A23): 

A' =AhT=O + (2R/N)(1 - x)6T - (N/R)[231(x2 + W) - (3x2 + u)N 

+ x N 2  - 3x2 + w - 4Nx + N2]6T. (A321 
As R + 
R is large but finite, we make the replacements T+ T + 6T ,  N+ N + 6T; then 

(the QSA limit), E = -l/p and N = m + 1 + S + T as obtained in I. When 

E = -I/(N + 6 ~ 1 2  = - i / ~ 2  + ( 2 / ~ 3 ) 6 ~  + o(m2). 
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